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Triacetone triperoxide (TATP, 1, Chart 1) is an organic peroxide
known since the 19th century,1 and its explosive properties are well
characterized.2 Although it is too unstable for practical use, it has
emerged as an improvised explosive of choice for terrorists because
of its ease of preparation. While TATP can be detected using
standard analytical methods such as mass spectrometry,3 it is
invisible to the common specialized techniques developed to detect
nitrogen-containing explosives.2,4 Because of the danger of handling
or transporting TATP, a visual “naked eye” test for rapid first-pass
analysis is desirable. A colorimetric visual test based on a
peroxidase-catalyzed reaction of H2O2 released from TATP has been
reported.5 No visual fluorescence-based method has been reported,6

although such a method could benefit from the greater sensitivity
associated with fluorescence. We describe here aromatic sulfoxide
reagents for visible fluorescence detection of nmol-quantities of
TATP and show that these have potential for broader application.7

The peroxide character of TATP suggested developing a system
in which fluorophore emission was modulated by the oxidation of
an adjacent heteroatom.8 While phosphine profluorophores were
initially explored,9 these proved unsuitable, and our attention turned
to the oxidation of sulfur-containing substrates.10 Peroxide oxida-
tions of sulfides to sulfoxides and sulfoxides to sulfones have been
studied extensively, as has the photochemistry of these species.11

However, to our knowledge, there have been no systematic studies
relating the oxidation state of sulfur and the fluorescence properties
of a proximate fluorophore.

A series of pyrene derivatives (2-4, a-c, Table 1) were selected
for initial evaluation on the basis of ease of synthetic access and
the (partially) visible emission of pyrene. Notably, in each series,
the sulfone exhibits the strongest fluorescence and the sulfoxide
the weakest. Particularly in the case of benzylic sulfoxides 3b and
4b, precedent suggests an R-cleavage/radical recombination pathway
as the dominant nonradiative deactivation pathway for the excited
state,11dratherthanphotoinducedelectrontransfer(PET)quenching.12-14

The suppression of this deactivation pathway in the corresponding
sulfones correlates with the increased C-S bond strength of sulfones
relative to sulfoxides, inferred from comparison of dimethyl
sulfoxide and sulfone.15

The emission from sulfides 2a-4a is varied, although even in
the cases of weakly emissive 3a and 4a the sulfides are more
emissive than the corresponding sulfoxides. Preliminary experiments
indicate that R-cleavage occurs in 3a and 4a as well, although less
efficiently than in the sulfoxides.14 However, additional fluorescence
quenching from PET cannot be excluded.

Ultimately, the fact that sulfones 2c-4c are much more
fluorescent than the corresponding sulfoxides provides an op-
portunity for oxidation-based visual TATP detection (Figure 1).
An estimate of maximum response is provided by the ca. 50-fold
increase in visible emission for 4c relative to 4b, which can easily
be discerned by the naked eye (Figure 1, inset).

TATP does not react directly with profluorophores 2b-4b.
However, in the presence of methyltrioxorhenium (MTO) they react
rapidly with the H2O2 generated by UV irradiation of TATP,17,18

undergoing oxidation to the corresponding sulfones. Beginning with
photolysis of 500 nmol (ca. 0.1 mg) of TATP, a 5-fold increase in
visible fluorescence can be attained within 15 min (illustrated with
4b/4c, Figure 2).19 With regard to detection limits, we have found
that we can generate a visual response to as little as 100 nmol of
TATP. Although a longer reaction time (90 min) is required for
full development, the fluorescence can still be easily seen with the
naked eye (Figure 2, inset).14

A concern for potential practical application is reaction with other
oxidants.2-4 In this respect, we note that 2b-4b, with or without
MTO, do not react appreciably with oxidants such as tBuOOH,

Chart 1. TATP and (Pro)fluorescent Probes

Table 1. Fluorescence Properties of Pyrene Derivatives 2-4,
a-c14

compound ε (103 cm-1 M-1)a φb

2a 2.50 0.34
2b 3.50 0.02
2c 3.07 0.76
3a 4.37 0.01
3b 3.37 e0.01
3c 5.08 0.47
4a 3.98 e0.01
4b 3.88 <0.01
4c 5.20 0.41

a For longest-wavelength λmax. b Relative to pyrene (φ ) 0.32).16

Figure 1. Emission of 4b and 4c in CH2Cl2, normalized to 4b at 420 nm;
emission from 10-4 M solutions of 4b and 4c (inset).
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NaOCl, LiClO4, K2Cr2O7, or air. They do react spontaneously, in
the absence of MTO, with KMnO4, which is occasionally used in
improvised explosives.2a A potential limitation of this approach is
that 2b-4b are not stable to prolonged UV irradiation (although
they are stable to visible light). Given that radical fragmentation/
recombination is integral to the signaling mechanism, it is not clear
that this limitation can be entirely overcome. However, 2b degrades
more slowly than 3b or 4b while still showing significant
fluorescence enhancement upon oxidation to 2c, indicating that there
is potential to suppress degradation through structural modification
while retaining useful fluorescence response.20

In conclusion, we have reported the first visual fluorescent assay
for TATP detection. It is operationally simple and capable of
detecting nmol-quantities of TATP, requiring no sample preparation
beyond brief photolysis, and is more sensitive than the reported
visual colorimetric detection method.21 With regard to broader
impact, we believe that aryl sulfoxides have application in the
detection of species beyond oxidants of interest. As an example,
we find that titration of 2b with metal ions such as Li+ and Zn2+

leads to fluorescence enhancement.14,22 More detailed study of this
observation, as well as development of second-generation sulfoxide
reagents with longer excitation/emission wavelengths and increased
stability, are ongoing.
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420 nm; solutions before and after reaction with 100 nmol photolyzed TATP
(inset).14,19
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